目 录

-,	概述	(1)
	1.1 仪器的外形结构	(1)
二、	技术指标	(2)
三、	工作原理······	(3)
四、	仪器的安装	(4)
	4.1 气压舱操作方法	(4)
	4.2 气动系统连接	(6)
	4.3 安装高压注射器······	(6)
	4.4 调整正负压 ······	(9)
五、	菜单功能	(10)
	5.1 菜单功能一览表	(10)
	5.2 自检	(11)
	5.3 主菜单界面	(13)
	5.4 检测设置	(15)
	5.5.1 检测标准设置	(15)
	5.5.2"自定义"粒径设置	(16)
	5.6 其他设置 ······	(17)
	5.6.1 时钟设置	(18)
	5.6.2 背光设置	(19)

5.6.3 仪表信息
5.7 清洗操作
5.8 检测操作
5.8.1 常压检测
5.8.2 加压检测
5.8.3 检测操作界面
5.8.1 常压检测
5.8.1 常压检测
六、标定(36)
6.1 通道标定(36)
6.2 系统参数
6.3 标定参数(39)
6.4 噪声测定(40)
6.5 修正参数
6.6标定操作(43)
6.7 标尺设置(46)
6.8 体积测定(49)
七、测试方法(51)
附录Ⅰ 传感器拆卸(53)
附录Ⅱ 常用标准固体颗粒污染等级代号(57)

2

一概述

油液污染度测定仪采用光阻法(遮光法)原理设计,用于检测液体中的颗 粒的大小和数量。可广泛应用于航空、航天、电力、石油、化工、交通、港口、 冶金、机械、汽车制造等领域中对液压油、润滑油、变压器油(绝缘油)、汽 轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油等油液进行固 体颗粒污染度检测,及对有机液体、聚合物溶液进行不溶性微粒的检测。

1.1 仪器的外形结构

注: 主机前面板如下图 1.1 所示:

图 1.1.1

1、触摸显示屏:显示菜单触控界面,实现对仪器的操作。

2、高压注射泵:取样装置。

3、正压表:指示气压舱内的正压值。

4、正压调压阀:调整正压值。

5、负压表:指示气压舱内的负压值。

6、负压调压阀:调整负压值。

7、气压舱:密闭储存正压或负压。

8、检品台:测试过程中,将测试检品放在检品台上进行测试。

- 9、打印机:测试完成后打印测试数据。
- 10、开关:开机或关机。
- 注: 主机后面板如下图 1.2 所示:

图 1.2

- 1、排液接口:连接废液收集装置。
- 2、串行通讯接口:连接计算机进行数据传输。
- 3、气压泵电源插座:连接气压泵电源插座。。
- 4、电源插座及开关:连接电源线,开启电源开关。
- 5、负压接口: 与泵的负压端口相连接。
- 6、正压接口: 与泵的正压端口相连接。

二 技术指标

- 光 源:半导体激光器
- 测量范围: 0.8µm~600µm(取决于选定的传感器)
- 测量通道: 16通道, 粒径任意设定(校准曲线粒径范围内)
- 取样体积: (0.2~1000)mL
- 取样精度: 优于土0.5%
- 取样速度: 5mL/min~80mL/min

分辨率: <10%

重合误差极限: 12000-24000粒/mL取决于选定的传感器

重复性: RSD<2%

气压舱最大正压: 0.8Mpa

气压舱最大负压: 0.08Mpa

检测样品粘度: ≤650cst

数据输出: 内置打印机及 RS232接口

环境温度: 0~60℃

电 源: AC220V±10% 50Hz±10%;

功 率: ≤200₩

外形尺寸: 主机360mm×370mm×700mm 气泵330×266×255mm

重 量: 主机30kg 气泵10kg

三 工作原理

采用 ISO4402/ISO11171 规定的遮光法(Light Extinction)(又可称为消光法或光阻法)原理进行油液污染度检测,具有检测速度快,抗干扰性强,精度高,重复性好等优点。

遮光法的原理如图 3.1 所示。平行光束垂直穿过截面积为 A 的 样品流通室,照射到光电接收器上,当液流中没有颗粒时,电路输 出为 E 的电压,当液流中有一个投影面积为 a 的颗粒通过样品流通 室时,阻挡了平行光束,使透射光衰减,此时在电路上输出一个幅

度为 E。的负脉冲。

图 3.1 遮光法原理

四 仪器的安装

4.1 气压舱操作方法

1、气压舱的开启方法

(1) 仪器出厂时将气压舱手柄,如图4.1.1所示拆下,共两个手柄,使用前应先安装好手柄。持气压舱手柄顺时针旋转拧入图示安装孔,如图4.1.2所示,两个安装孔相差180度。

(2) 双手分别握住气压舱的两只手柄,顺时针旋转到极限位置。, 如图 4.1.3 所示。

图 4.1.3

(3)双手托住检测台,慢慢向下将检测台放至最低位置,如图 4.1.4 所示。

图 4.1.4

2、气压舱的密闭方法

(1) 双手分别握住气压舱的两只手柄,顺时针旋转到极限位置;

(2)双手托起检测台,慢慢向上将检测台移至气压舱内(向上移动 到最高位置);

(3) 双手分别握住气压舱的两只手柄, 逆时针旋转到极限位置, 即 可完成气压舱的密闭。

4.2 气动系统连接

1、将仪器后面板上的正压接口与泵上的正压接口用气压管(正
 压)相连接,使用扳手拧紧。

2、将仪器后面板上的负压接口与泵上的负压接口用气压管(负压)相连接,使用扳手拧紧。

4.3安装高压注射器

 精密注射器,如图 4.3.1 所示,是易碎部件,仪器出厂时将其拆 下单独包装,使用前应先进行注射器的安装。

2、 使穿杠位于穿杠槽的二分之一处如图 4.3.2 所示。

图 4.3.2

3、用手握住锁母, 逆时针旋转将锁母拆下, 如图 4.3.2 所示。

4、将注射器的穿孔穿入穿杠,用手捏住注射器顶端的金属部分慢慢 向上提,使其与凹槽上端的黑色螺纹接口相接,并逆时针旋转注射 器将其拧紧,如图 4.3.3 所示。

图 4.3.3

5、最后将先前拆下来的锁母拧紧,如图 4.3.4 所示。

图 4.3.4

注意事项:

安装或拆卸注射器前,必须使穿杠位于穿杠槽的二分之一处。 可通过执行【清洗操作】,当穿杠运行至穿杠槽的二分之一处时强 行切断仪器电源实现。

4.4 调整正负压

1、正压的产生与调整:

正压的主要目的是辅助注射器抽吸粘度较大的样品,同时兼有 一定的样品脱气作用。顺时针方向调整正压调节阀,压力增大;逆 时针方向调整正压调压阀,压力减小。

仪器开机,将气压舱密闭,在主菜单界面点击【检测操作】,再 点击【正压】,如图4.4.1所示,此时气压泵启动,开始加正压,正 压表的指针逐渐上升,直至达到预设值。如需调整正压压力,将正 压调节阀向外拔起,缓缓调整正压调节阀,使压力稳定到预想值后, 向内按下正压调节阀将其锁定。

图 4.4.1

2、负压的产生与调整:

负压主要用于样品脱气,可根据实际情况调整负压的大小。顺时针方向调整负压调节阀,负压增大;逆时针方向调整负压调节阀,负压增大;

仪器开机,将气压舱密闭,在主菜单界面点击【检测操作】,再 点击【负压】,如图4.4.1所示,此时气压泵启动,开始加负压,负 压表的指针逐渐上升,直至达到预设值。如需调整负压压力,将负 压调节阀向外拔起,缓缓调整负压调节阀,使压力稳定到预想值后, 向内按下负压调节阀将其锁定。

3、放气泄压

加压状态下,点击【排气】,如图 4.4.1 所示,气压泵停止工作, 气压舱自动放气,回到大气压状态。

注意事项:加压前必须先密闭气压舱;在加压状态下禁止开启气 压舱

4.5 工作环境

仪器应置于清洁的实验室内,且最好配备有超净工作台。温度 和工作电压要满足技术要求。应避免与对电源有强烈干扰的设备同 时使用。

如果气压泵工作时噪声过大,为减小噪声,可在气压泵底部垫 一层泡沫。

五 菜单功能

5.1 菜单功能一览表,如下图 5.1.1 所示

图 5.1.1

5.2 自检

打开仪器的电源开关后,仪器进入自检界面,自动对传感器、

取样器和阀进行自检,并显示自检结果,如下图 5.2.1 所示:

图 5.2.1

在自检过程中,如果有异常出现,检测项前会显示"×",应按 下述提示处理:

1、"传感器"异常:使用纯净石油醚进行【单次清洗】两次,然 后关闭电源,再开机重新进行自检,查看异常是否排除。如不能排 除,可参照附录二清理传感器。如仍不能排除,请与厂家联系。

2、"取样器"、"阀"异常: 仪器将不能正常运行,请与厂家联系。 5.3 主菜单界面

自检正常后,仪器自动进入到主菜单界面,如下图 5.3.1 所示:

图 5.3.1

点主菜单界面由【检测操作】、【检测设置】、【通道设置】、【清 洗操作】、【其它设置】、【通道标定】及【搅拌转速调整】等触摸区 构成。

检测台内部装有搅拌器,点击屏幕下方【搅拌转速调整】的"+" 或"-"可调整搅拌器的搅拌速度。

5.4 检测设置

点击主菜单界面中的【检测设置】,进入到检测设置界面,如下 图 5.4.1 所示:

图 5.4.1

检测设置包括以下子项,检测操作时将根据以下各子项的设置 进行。

▶ 检测方式:自动/手动/体积测定。

"体积测定"的操作方法请参见 6.8 章节。

▶ 检测次数: 01~05次。

TIMEPOWER

- ▶ 预走量: 0.3~1.0mL,设定间隔 0.1mL。取样器在检测计数前的预走量。
- ▶ 取样量: 0.2~100.0mL,设定间隔 0.1mL。
- ▶ 单位: "XXX" 或 "XXX/ML"。

选择"XXX"时,计数显示为总数;

选择"XXX/ML"时,计数显示为每毫升中的数量。

▶ 正压: 0000~0100S

当"检测方式"设为"自动"时,此项有效:此项用来设置样 品检测前正压的预加压时间,并且在检测过程中连续加压,直至检 测结束。如设置为0000,则不进行预加压操作,并且在检测过程中 也不加正压。

▶ 负压: 0000~0100S

当"检测方式"设为"自动"时,此项有效:此项用来设置样 品检测前负压的加压时间。如设置为0000,则不进行加负压操作。 以上各子项的设置方法:先点击需要设置的项目,再点击【◀】或 【▶】进行设置。对于"检测次数"、"预走量"、"取样量"、"正压" 和"负压"五项,可通过点击屏幕右侧数字区的数字进行输入,输 入完毕后点击【确认】键确认。所有子项设置完毕后,点击【返回】 键,保存设置并回到主菜单界面。

◇ 注意事项:

如果正压和负压均设置了时间,并且"检测方式"设为"自动"。 执行检测操作时,仪器会先加负压(加压时间为设置的负压时间), 然后放气(放气时间5秒),再预加正压(预加压时间为设置的正 压时间),此时仪器开始执行检测操作,在检测过程中连续加正压, 直至检测结束后自动放气泄压。

5.5 通道设置

5.5.1 检测标准设置

点击主菜单界面中的【通道设置】,进入到通道设置界面,如下 图 5.5.1 所示:

图 5.5.1

点击检测标准右侧的方框,再点击【◀】或【▶】可选择检测时要依据的标准。检测标准包括: NAS 1638、GJB 420A-96、GJB 420B-06、ISO 4406-99、ISO 4406-87、SAE749D、GB/T14039、roct-17216、AS4059D 和自定义等。

连续点击【▲】或【▶】可切换到"自定义"标准,如图 5.5.2

所示。允许用户在 16 个通道中,任意选择若干个通道进行检测。选择方法:点击需要选择的粒径通道前的【○】,【○】变成【⊙】,则 该通道即被选择,如图 5.5.2 所示。此项功能非常灵活、方便,用 户可将常用到的粒径设置到"自定义"中,检测时只需将检测标准 切换到"自定义"即可。

通道粒径的单位包括: um 和 um (c)。针对选定的某种检测标 准,点击通道粒径右侧的方框,再点击【◀】或【▶】可在两种粒 径及单位之间进行转换。(roct-17216标准除外,此标准只有一种 粒径单位 um)

5.5.2"自定义"粒径设置

点击图 5.5.2 界面中的【确定】可进入自定义粒径设置界面,显示屏显示已设置的粒径值及相应标尺值,如图 5.5.2 所示。"自定义"标准的检测粒径是由用户自行设定的。

图 5.5.2

屏幕显示当前设定的 16 个通道的粒径值及相应标尺值。点击 "粒径"列的任一方框处,"粒径值"会被选中,可通过点击屏幕右 侧数字区的数字进行输入,输入完毕后点击【确认】键确认。此时 对应"标尺"列的数值会自动更改。

粒径值的设置范围在校准曲线涵盖的范围内,即最小校准点和 最大校准点之间。如仪器采用 ACFTD 方法校准,粒径设置范围一 般为 1.00μm~100.00μm 之间,可设置到小数点后两位(如 99.99); 如仪器采用 MTD 方法校准,粒径设置范围一般为 4.00μm(c)~ 70.00μm(c)之间;如仪器采用乳胶球方法校准,粒径设置范围一 般为 2.00μm~100.00μm 之间。

全部粒径设置完毕后,点击【返回】键保存设置并返回至上一 级菜单界面。

5.6 其他设置

在主菜单界面点击【其它设置】,进入其它设置界面,如图 5.6.1

所示。包括【时钟设置】、【背光设置】和【触摸屏校准】三个子项。

图 5.6.1

5.6.1 时钟设置

在【其它设置】界面点击【时钟设置】,可进入时钟设置界面, 可完成仪器内部电子时钟的日期和时间的设置,如图 5.6.2 所示:

图 5.6.2

调整方法:无论调整年、月、日或时、分、秒的哪一项,点击 任一方框处,对应的数字会被选中,通过点击屏幕右侧数字区的数 字进行输入,输入完毕后点击【确认】键确认。全部项修改完毕后 按【返回】键存储并退出时钟设置界面。

电子时钟由显示屏上的电池供电,仪器关机后仍可正常运行。 如果仪器关机后电子时钟停止运行,则显示屏的电池需要更换了, 更换方法如下:

- 将仪器关机,参照附录一第2步的内容将机头抬起:用双 手食指分别按住机头左右的两个固定轴向里压,压到底的 同时向上抬机头,抬起机头后可看到液晶屏的背面;
- 如图 5.6.3 所示,电池位于显示屏背面的左下角,型号为 CR2032 或 CR1220 纽扣电池;

图 5.6.3

- 用工具轻撬电池边缘(电池座一侧有卡点,一侧没有卡点, 应轻撬没有卡点一侧),即可将原电池拆掉。取同型号新电 池小心将其装上即可。
- 5.6.2 背光设置

在【其它设置】界面点击【背光设置】,可进入背光设置界面,

可完成显示屏背光亮暗的设置,如图 5.6.4 所示:

点击选中"背光等级"后的数字,再通过点击屏幕右侧数字区 的数字进行输入(可在01~63之间设置,数值越小,背光越暗;数 值越大,背光越亮),输入完毕后点击【确认】键确认。设置完毕后 按【返回】键存储并退出背光设置界面。

5.6.3 仪表信息

在【其它设置】界面点击【仪表信息】,可进入仪表信息界面,, 如图 5.6.5 所示:

图 5.6.5

5.7 清洗操作

在主菜单界面点击【清洗操作】,进入清洗操作界面,如图 5.6.1 所示,主要由【单次】、【开机】、【关机】、【反冲】、【设置】五个子 项构成,此功能可完成对传感器、注射器及管路的清洗和反冲功能。

图 5.7.1

清洗操作应使用洁净的并与测试样品相溶的清洗液进行清洗。 例如水基质的样品应采用洁净的去离子水进行清洗操作,油基质的 样品应采用过滤过的石油醚(等级在6级以下且沸程为90~120℃) 进行清洗操作。经过洁净的清洗液的清洗,可溶解并清除附着在传 感器狭缝和管路中的残留样品,达到清洁传感器和管路的目的。

◇ 注意事项:

(1)石油醚作为清洗液时,建议采用过滤过的且沸程为90~120℃的石油醚进行。

(2) 另外,石油醚只能作为清洗仪器使用,其检测结果不能

作为评判仪器是否准确的依据。

1、清洗次数设置:用户可以根据自己的实际使用情况,设置"开 机清洗"和"关机清洗"的次数。在清洗操作界面按【设置】键, 进入清洗次数设置界面,如图 5.7.2 所示,点击选中需设置的数字 项,再通过点击屏幕右侧数字区的数字进行输入(可在 1~15 次间 设置),输入完毕后点击【确认】键确认。修改完毕后按【返回】键 存储并退出清洗次数设置界面;

2、单次清洗:点击【单次清洗】后,注射器执行一次清洗操作,取样量 10mL,如图 5.7.3 所示。如需中止清洗操作,需等待注射器下降 3 后,可按【中止】键中止;

图 5.7.3

3、开机清洗:点击【开机清洗】后,注射器将按当前"开机清洗" 设置次数执行清洗操作。仪器开机后,应首先执行【开机清洗】操 作,达到清洗传感器、注射器及管路的目的,使仪器的管路处于清 洁状态;

4、关机清洗:点击【关机清洗】后,注射器将按当前"关机清洗" 设置次数执行清洗操作。仪器关机前,必须执行【关机清洗】操作, 以达到清洗传感器、注射器及管路内样品残液的目的,使仪器的管 路处于清洁状态;

5、反冲: 仪器在使用过程中,有可能样品不洁净导致异物吸入传 感器狭缝,造成传感器堵塞。此时可以用此功能反冲传感器狭缝, 以达到清除异物的目的。首先将洁净的清洗液放入气压舱内,在清 洗操作界面,如图 5.7.1 点击【反冲】键,此时注射器会从取样头吸 入洁净的清洗液,待注射器吸满 10mL 后回推,并从取样头排出吸

入的清洗液。此时完成一次反冲排堵操作,如需进行下一次反冲操 作可重复此步骤;

6、排空液路: 先用清洗液执行数次清洗操作, 然后将清洗液从气 压舱内取出, 此时气压舱内不放任何液体, 再执行数次清洗操作, 即可将仪器内的液路排空。

◇ 注意事项:

关机前必须进行清洗操作。若不进行清洗操作,传感器检测区 的样品残液易结晶而堵塞传感器,导致传感器异常,使仪器发生故 障无法进行正常检测。

5.8 检测操作

"检测操作"分为"常压检测"和"加压检测"两种方式。"常 压检测"又分为"常压手动检测"和"常压自动检测"两种。同样, "加压检测"也分为"加压手动检测"和"加压自动检测"两种。

对于某些粘度较低,流动性较好的液体(一般低于 20 厘泊),如水、酒精、汽油、石油醚,异丙醇等,一般可采用常压检测,具体操作方法如下:

▶ 手动检测:

5.8.1 常压检测

 进入【检测设置】,将【检测方式】设置成"手动",其余 项按要求设置。

- ② 将样品置入气压舱,点击【检测操作】,再点击【开始检测】, 仪器执行一次检测操作(此时气压泵不工作);再点击一次 【开始检测】,仪器再执行一次检测操作;连续点击【开始 检测】,直至到达设置的检测次数为止。
- ▶ 自动检测:
 - ① 进入【检测设置】,将【检测方式】设置成"自动"。

② 点击【正压】,将正压预加压时间调整为0000s。

③ 点击【负压】,将负压加压时间调整为0000s,其余项按要 求设置。

④ 将样品置入气压舱,点击【检测操作】,再点击【开始检测】, 仪器将自动执行 N+1 次("N"为设置的检测次数)检测

操作 (此时气压泵不工作),并自动剔除第一次检测数据。

5.8.2 加压检测

对于某些粘度较高,流动性较差的液体(粘度在 20~350 厘泊), 如液压油,润滑油、变压器油、电力透平油等,应采用加正压辅助 的方法进行检测,具体操作方法如下:

▶ 手动加压检测:

 进入【检测设置】,将【检测方式】设置成"手动",其余 项按要求设置。

② 将样品置入气压舱,点击【检测操作】,如需要对样品进行

真空脱气,点击【负压】,用肉眼观察样品的脱气情况,气 泡基本上升至液面后,点击【排气】,结束真空脱气过程。

- ③ 静止几秒钟,点击【正压】,待压力缓缓达到预设值后(可通过正压调节阀调整压力的大小),点击【开始检测】,仪器将执行一次检测操作。在检测过程中应观察注射器抽吸样品的情况,如注射器中出现流动气泡或抽空的现象,为正压不足造成,应调整正压调节阀,增大正压,再点击【开始检测】并观察,直到注射器中不出现流动气泡和抽空现象为止。
- ④ 一次检测完毕后,如需进行下一次检测,再点击【开始检测】即可。连续点击【开始检测】,直至到达设置的检测次数为止。在整个检测过程中,气压泵一直处于开启状态,检测完毕后,点击【排气】,气压泵停止工作,释放正压。
- ▶ 自动加压检测:
 - 首先要设定正压预设值,即在手动加正压的状态下调整正 压调压阀,使正压恒定到预想的压力,然后锁定正压调压 阀。
 - ② 进入【检测设置】,将【检测方式】设置成"自动"。
 - ③ 点击【正压】,例如将正压预加压时间调整为0020s(如果"正压预设值"较高,预加压时间应适当加长,应保证在

检测前正压能达到预设值且稳定)。

- ④ 点击【负压】,例如将负压加压时间调整为0030s(如果油液中含有大量的气泡,负压的加压时间应适当加长;如果不需要对样品进行真空脱气,可将负压的加压时间调整为0000s)。
- ⑤ 将样品置入气压舱,点击【检测操作】,再点击【开始检测】, 此时气压泵启动,开始按负压设置的时间加负压对样品进 行真空脱气,然后放气(放气时间为5s),再开始预加正 压,当加压时间到正压设置的预加压时间时,仪器开始自 动执行 N+1 次("N"为设置的检测次数)检测操作,并自 动剔除第一次检测数据。
- ⑥ 检测结束后气压泵停止工作,自动排气泄压。

5.8.3 检测操作界面

在主菜单界面点击【检测操作】可进入检测操作界面。检测操 作界面由【开始检测】、【数据查询】、【历史数据】、【打印设置】、【正 压】、【负压】和【排气】七个子项构成,如图 5.8.1 所示:

图 5.8.1

界面下方显示当前检测设置和通道设置的参数,如显示的设置 参数与检测要求不一致,可按【返回】返回到主菜单界面,重新设 置后再执行【检测操作】。

5.8.3.1 开始检测

按【开始检测】, 仪器将按照检测设置项和通道设置项设置的参数执行检测操作。

▶ NAS1638 检测:

检测标准设置为"NAS1638"时, 仪器将检测 5μm/6um(c)、15 μm/14um(c)、25μm/21um(c)、50μm/38um(c)及 100μm/70um(c) 共 5 个通道的数值。

▶ GJB420A-96 检测:

检测标准设置为"GJB420A-96"时,仪器将检测 2.0μm/4.6um(c)、 5.0μm/6um(c)、15.0μm/14um(c)、25.0μm/21um(c)、

50.0µm/38um(c)共5个通道的数值。

▶ GJB20B-06 检测:

检测标准设置为"GJB420B-06"时,仪器将检测 1.0µm/4um(c)、

5.0µm/6um(c), 15.0µm/14um(c), 25.0µm/21um(c),

50.0µm/38um(c)、100.0µm/70um(c)共6个通道的数值。

▶ ISO4406-99 检测:

检测标准设置为"ISO4406-99"时, 仪器将检测 1.0μm/4um(c)、 5.0μm/6um(c)、15.0μm/14um(c)共3个通道的数值。

▶ ISO4406-87(JB/T9737)检测:

检测标准设置为"JB/T9737"时, 仪器将检测 5.0μm/6um(c)、 15.0μm/14um(c)共2个通道的数值。

▶ SAE749D 检测:

检测标准设置为"SAE749D"时, 仪器将检测 5 µ m/6um(c)、

15 μm/14um(c) 、25 μm/21um(c) 、50 μm/38um(c) 及

100 µ m/70um(c) 共 5 个通道的数值。

➤ GB/T14039 检测:

检测标准设置为"GB/T14039"时,仪器将检测 1.0µm/4um(c)、 5.0µm/6um(c)、15.0µm/14um(c)共3个通道的数值。

▶ roct-17216 检测:

检测标准设置为"roct-17216"时,仪器将检测2µm、5µm、

10µm、25µm、50µm及100µm共6个通道的数值。

▶ AS4059D 检测:

检测标准设置为"AS4059D"时,仪器将检测1µm/4um(c)、

5µm/6um(c)、15µm/14um(c)、25µm/21um(c)、50µm/38um(c)及 100µm/70um(c)共6个通道的数值。

▶ 自定义通道检测:

检测标准设置为"自定义"时,仪器将按用户设置的粒径及通 道数进行检测,如图 5.8.2 所示。

粒径	差分	累积	粒径	差分	累积
1.00	413.0	693.0	100.0	0.0	0.0
2.00	245.4	290.0			
5.00	26.6	34.6	1000		
10.00	5.4	8.0	AST		
15.00	2.6	2.6	A.L.R.		
25.00	0.0	0.0			
40.00	0.0	0.0			
50.00	0.0	0.0		Sec.	
-	-				

图 5.8.2

以上图为例说明一下累计和差分:

累积: ≥1µm; ≥2µm; ≥5µm; ≥10µm; ≥15µm; ≥25µm;

 \geq 40 μ m; \geq 50 μ m; \geq 100 μ m;

差分: 1~2µm; 2~5µm; 5~10µm; 10~15µm; 15~25µm; 25~40

µm; 40~50µm; 50~100µm; ≥100µm;

◇ 注意事项:

"累积"是大于该通道粒径的颗粒数。

"差分"是介于该通道粒径与下一通道粒径之间的区间颗粒数。 5.8.3.2 打印设置

在检测操作界面点击【打印设置】键进入打印设置界面,如图 5.8.3 所示。共包括打印信息输入、自动单次打印、自动全部打印、 包括直方图打印四个子项。如需开启某项则点击选中"开启"前的 【〇】, 使【〇】变成【〇】即可。如需关闭某项则点击选中"关闭" 前的【〇】, 使【〇】变成【〇】即可。设置完毕后按【返回】键保 存并退出该界面。

图 5.8.3

▶ 打印信息输入:

此项若开启,在数据查询界面执行"打印全部页"操作时,界 面会出现"样品名称、样品批号"输入界面,如图 5.8.4 所示,

用户可通过触摸屏输入内容(可输入中文),输入完毕后打印机 可将输入的样品名称、样品批号连同检测数据一起打出来。 此项若关闭,执行"打印全部页"操作时,打印机则直接打印 检测数据,打印报告上"样品名称、样品批号"后面空白,可 由用户自行填写。

图 5.8.4

- ▶ 自动单次打印: 此项若开启,打印机将在每次检测结束后自动打印本次的检测 结果。
- ▶ 自动全部打印:

此项若开启,打印机将在样品检测全部完成后(完成设置的检测次数)自动打印全部的检测数据。此时若"打印信息输入" 项为开启状态,仪器会直接转到"样品名称、样品批号"输入 界面,如图 5.8.4 所示。

▶ 包括直方图打印:

此项若开启,打印机在执行"打印全部页"操作时,将打印积 分和微分的分布直方图。注意:只有当"检测标准"设置为"自 定义"标准时才打印积分和微分的分布直方图。

5.8.3.3 数据查询

检测完毕后,可通过此项功能对各次的检测结果、均值及分布 图进行查询。点击【数据查询】,再通过点击屏幕下方的【下页】、 【均值】【删除】【存储】【清空】、【打印当前页】、【打印全部页】 执行各种操作,如图 5.8.5 所示。

图 5.8.5

- 下页:连续点击【下页】,仪器会循环显示各次的检测结果、 平均值、100mL平均值、积分/微分分布图(只有当【检测标 准】设置为"自定义"时,才显示积分/微分分布图)。
- ▶ 均值:点击【均值】,可直接转到平均值界面。
- ▶ 删除:在各次检测结果查询界面,点击【删除】,可删除当前

查询的数据。当第一次数据需剔除或某次数据明显异常时,可 用此功能将数据删除。

- ▶ 存储:点击【存储】,可将本组检测数据存储至仪器内存,可存储 100 组数据。
- ▶ 清空:点击【清空】,将会清空所有的检测数据。
- 打印当前页:点击【打印当前页】,打印机将打印当前界面的内容。
- 打印全部页:点击【打印全部页】,打印机可将样品信息、检测结果、平均值、100mL平均值、积分/微分分布图(只有当 【检测标准】设置为"自定义",且【打印设置】中"包括直

方图打印"功能开启,才打印积分/微分分布图)打印出来。

◇ 注意事项:

若【打印设置】中"打印信息输入"功能开启,点击【打印全 部页】后,界面会出现"样品名称、样品批号"输入界面,如图 5.7.4 所示,用户可通过触摸屏输入信息(可输入中文),输入完毕后打 印机可将输入的样品名称、样品批号连同检测数据一起打印出来。

▶ 图 5.8.4 界面控制键介绍:

Caps: 上档键(选中后为上档字符)。

Shift: 大小写键(选中后为小写字母)。

中/英:中英文输入法转换。

Back: 删除光标前的字符。

Esc: 取消。

Enter: 确认。

◀υ: 翻页(输入中文时)。

▶ 中文输入法介绍:

点击"中/英"使其选中,再输入汉字的全拼(此时输入必须是 大写字母),输入完毕后点击"空格",界面上会出现该拼音对 应的汉字集,每个汉字对应一个编号,点击其对应的数字键即

可。如该页汉字集没有所需汉字,可点击"◀υ"翻页。

5.8.3.3 历史数据

点击【历史数据】,可进入历史数据查询界面,历史数据均以存储时的时间进行排序和命名,如图 5.8.6 所示。在此界面可查询存储过的历史数据,并可打印出来。

- ▶ 点击"∩、∪"键:可在当前界面上下选择数据。
- 点击"前页、后页"键:若存储的历史数据较多时(需多页显示),可用此功能前后翻页。

图 5.8.6

点击"读取"键:可将当前选择的数据读取出来,并自动转至数据查询界面,如图 5.8.7 所示。

图 5.8.7

此界面为历史数据查询界面,故【删除】、【清空】及【存储】 三项功能无效;【下页】、【均值】、【打印当前页】及【打印全部页】 四项功能可用。

六 标 定

6.1 通道标定

设可通过【通道标定】功能完成对仪器的标定、校准及一些关键参数的设定。在主菜单界面点击【通道标定】,会出现输入密码界面,如下图 6.1.1 所示:

图 6.1.1

- 退出密码输入界面:在图 6.1.1 界面直接点击【Esc】可退出此 界面并返回到主菜单界面;
- 输入密码:用触摸笔点击,输入界面会显示 "****",输入完毕 后点击【Enter】,可进入【系统标定】界面;如密码输入错误, 输入界面会提示 "密码错误!"字样,并返回到主菜单界面;

注: 若需要操作此项请联系技术工程指导。

进入系统标定界面后,可看到【标尺设置】、【标定操作】、【标 定参数】、【噪声测定】、【系统参数】、【修正参数】六个子项, 如图 6.1.2 所示:

图 6.1.2

6.2 系统参数

6.2.1 系统参数设置

点击【系统参数】,进入系统参数设置界面,如图 6.2.1 所示。 可完成取样速度、回推速度、清洗速度、打印设置四项的设置。

图 6.2.1

- ▶ 取样速度:执行检测操作时注射器取样的速度,设置范围 5mL/min~60mL/min,出厂预设值为015。
- ▶ 回推速度:执行检测操作时注射器回推的速度,设置范围

5mL/min~60mL/min, 出厂预设值为040。

▶ 清洗速度:执行清洗操作时注射器取样和回推的速度,设置范围 5mL/min~60mL/min,出厂预设值为 040。

以上三项的调整方法:点击需要设置的项目数字,再点击界面 右侧数字区的数字进行输入,输入完毕后点击【确认】键确认。

▶ 打印设置:点击【○】,当【○】变成【⊙】时即被选中。当设置为【自动】时,在"标定操作"界面每执行一次检测操作,打印机会自动打印检测结果。

6.2.2 速度对检测的影响

检测速度对检测结果有至关重要的影响,检测速度越快,传感 器输出脉冲信号就越低,从而导致计数值变小。所以,设定的取样 速度一定要与仪器标定时设定的检测速度保持一致,不能随便更改。 某些粘稠度较大的样品,取样速度必须设定为慢速(如 5-10mL/min) 才能正常取样。对于此类样品,可以将检测速度设置为合适的取样 速度,但是,必须在此取样速度下对仪器进行重新标定。

对于这些粘稠度较大的样品,注射器回推时如果出现推不动的 现象,可以将回推速度适当的调低一点,如 5-20mL/min。同样,有 必要的话也可以将清洗速度适当的降低一点。

6.3 标定参数

点击【标定参数】,进入标定参数界面,如图 6.3.1 所示。在此

界面可从"标尺一"、"标尺二"、"标尺三"三套标尺中任选一项, 点击【O】,当【O】变成【O】时即被选中,屏幕显示该套标尺的 标定粒径、标尺值、标定方法、标定点数和取样速度等信息。选择 完毕后按【返回】退出此界面。

当前标尺:	○ 标尺一	○ 标尺二	○ 标尺三
粒径	标尺	粒径	标尺
1.0	44.0	100.0	2550.0
2.0	69.0	5	
5.0	177.0	A STOLES	
10.0	290.0	8 500	
15.0	435.0		
25.0	750.0		
40.0	1250.0		14
50.0	1550.0		195

图 6.3.1

◇ 注意事项:

当前标尺必须是有效标尺,并且需核实标定方法、检测速度等 信息。

6.4 噪声测定

点击【噪声测定】,可进入噪声测定界面,如图 6.4.1 所示。点击某标尺数字,再点击界面右侧数字区的数字进行输入,输入完毕后点击【确认】键确认。再点击【测定】,可进行各通道噪声值的测定。

图 6.4.1

根据国标 GB18854 中规定的方法对仪器的噪声进行测定。仪器 开机后预热 30 分钟,首先采用洁净清洗液进行管路清洗 2 次,保证 传感器中充满洁净的清洗液,进入"噪声测定"界面,等待 5 分钟, 以保证传感器中的液体完全不流动。将仪器各通道的初始标尺值均 设为 10mv,如图 6.4.1,点击【测定】,仪器将定时 60 秒并记录各 通道计数值,计数结束后,应查看计数值是否在 30~60 个之间。如 否,应调整各通道标尺值,再点击【测定】,直到各通道的计数满足 上述条件,如图 6.4.2 所示。此时第一通道的阈值电压即为阈值噪声 水平。测定完毕后按【返回】退出此界面。

图 6.4.2

6.5 修正参数

点击【修正参数】,出现输入密码界面 6.5.1 所示:

图 6.5.1

- ▶ 退出密码输入界面:在图 6.5.1 界面直接点击【Esc】可退出此 界面并返回到主菜单界面;
- 输入密码:用触摸笔点击,输入界面会显示 "*****",输入完毕后点击【Enter】,可进入修正参数调整界面;如密码输入错误,输入界面会提示"密码错误!"字样,并返回到主菜单界面;

注: 若需要操作此项请联系技术工程指导。

▶ 修正参数调整界面,如图 6.5.2 所示。共有"基准"和

"通道 1~通道 16"十七项参数供调整。点击需要调整的项目 数字,再点击界面右侧数字区的数字进行输入,输入完毕后点 击【确认】键确认。如需退出此界面可按【返回】。

图 6.5.2

♦ 注意事项:

此项一般在出厂检验和例行试验中进行,用户务必不能修改。 6.6 标定操作

点击【标定操作】,进入通道标定界面,如图 6.6.1 所示,通道标定界面共有【ACFTD】和【MOV】两个子项。

图 6.6.1

6.5.1 ACFTD 标定

ACFTD 标定功能暂未设置。

6.5.2 MOV 标定

MOV(移动窗标定)界面可完成对仪器进行标定及校准的功能, 适用于 ACFTD、ISOMTD 油中颗粒标准物质及单分散乳胶球对仪 器的标定及校准。下面以 ACFTD 油中颗粒标准物质标定仪器为例 说明,具体操作方法如下:

① 点击【检测设置】,设置预走量和取样量等检测参数。

② 准备 ACFTD 油中颗粒标准物质,使用前应按其使用说明 将其沐振、震摇、除气。

③ 如果标定时需要加压,此时就需先处理好 ACFTD 油中颗 粒标准物质,并将其放入气压舱内,密闭气压舱。点击【检 测操作】,再点击【正压】,并调节正压调节阀使压力恒定

到预想值。再点击【返回】返回至主菜单界面。

- ④ 如果标定时无需加压,此时将处理好的 ACFTD 油中颗粒 标准物质放入气压舱内,并密闭气压舱。
- ⑤ 点击【通道标定】、点击【标定操作】、再点击【MOV】, 进入移动窗标定界面,如图 6.6.2 所示。在此界面可修改标 定点粒径(标定点粒径请参照 ACFTD 标准物质证书进行) 及对应的标尺值。

图 6.6.2

⑥ 点击【手动】,仪器执行一次检测操作,检测结束后查看实测积分数,用实测积分数与ACFTD标准物质证书的标准值进行比较。如果所有通道的实测积分数与标准值的误差均在±10%以内,则标定完成。如不在范围内可点击需要调整的标尺数字,再点击界面右侧数字区的数字对该标尺值进行适当调整标尺值(实测积分数偏高,调高标尺值;实

测积分数偏低,调低标尺值),输入完毕后点击【确认】键确认。标尺值调整完毕后再点击【检测】进行下一次检测。 检测结束后再比较实测积分数和标准值,如果误差仍不在 ±10%以内,则仍适当调整标尺后再点击【检测】进行下 一次检测。直到所有通道的实测数值与标准值的误差在 ±10%内为止。

- ⑦ 在 MOV 标定界面中点击【打印】,可将当前 MOV 标定界面的 信息打印出来。如【系统参数】中的"打印设置"项设置 为【自动】时,在 MOV 标定界面每执行一次检测操作,打 印机会自动打印当次的检测结果。
- ⑧ 标定完成后,记录或打印粒径及标尺值。按【退出】键退出 MOV 标定界面,进入标尺设置界面(参考 6.7 章节),将标定点数、粒径、标尺值及标定方法等一一输入,完成一次 MOVWIND 标定。

6.7 标尺设置

点击【标尺设置】,进入标尺设定界面,如图 6.7.1 所示,此界 面可完成三组标尺的存储。下面以"标尺二"为例说明标尺的存储 方法。点击【标尺二】,进入到标尺二设置界面 6.7.2 所示。

图 6.7.1

图 6.7.2

- 标定点数量设置:点击左下角"标定点"后面的数字,再通过 右侧数字区输入数值,设置标定点数量,可在 4~16 间任意设 置。
- 标定点确定的基本原则:一般根据检测范围,在检测范围内选取 4~16 个点,其中必须包括检测范围的最小粒径和最大粒径。 仪器会根据各标定点的粒径和标定值,自动拟合成一条标定曲

线。根据标定曲线,可得到任意粒径的标尺。

- 取样速度设置:点击"取样速度"后面的数字,再通过右侧数 字区输入数值,输入标定时的取样速度值,此项为备注信息。 如:025,表示25mL/min。
- ▶ 标定方法设置:点击"标定方法"后面的字符,再点击【
 或【▶】,将其切换到此标尺标定时所用的标定方法。有三种标定方法可供选择,分别是乳胶球、ACFTD、MTD。
- 标定日期设置:点击"标定日期"后面的数字,再通过右侧数 字区输入数值,输入标定时的日期,此项为备注信息。如: 20100920,表示 2010 年 9 月 20 日。
- > 粒径和标尺值的设置:点击粒径值栏或标尺值栏需修改的数字 位置,数字反向显示表示选中,再点击界面右侧数字区的数字 进行输入,输入完毕后点击【确认】键确认。
- 打印:点击右侧数字区的【打印】,打印机将打印"当前标尺" 界面的全部标定信息(标定点数量、标定方法、取样速度、标 定日期及各标定点的粒径和标尺值)。

全部设置完毕后点击【返回】,屏幕显示"保存成功"字样并退出标 尺二设置界面。

◇ 注意事项:

如"当前标尺"的标定方法为 ACFTD, 且"检测标准"设置

为 ISO4406 标准时, 仪器会自动进行粒径转换。同样, 如"当前标 尺"的标定方法为 MTD, 且"检测标准"设置为 NAS1638、GJB420 等标准时, 仪器也会自动进行粒径转换。所以,"标定方法"项设 置必须正确, 否则会导致检测结果有很大偏差。

6.8 体积测定

体积测定功能主要用于计量检测时的取样精度。取样精度的高低 直接影响检测数据的准确度,具体用法如下:

- 准备精度不低于 1mg、量程不小于 200g 的电子天平; 洁 净的被测液 100mL; 纸杯 1 只。将 100mL 洁净的被测液
 倒入到纸杯中,并将其放至气压舱内,执行数次清洗操作。
- ② 点击【检测设置】,将"检测方式"调整为"体积测定";将"取样量"调整为需要测定的取样体积(如 5mL)。
- ③ 点击【开始检测】,此时注射器向下运动进行取样,当达到 预走量后注射器停止取样,屏幕出现"请进行第一次称重, 然后点击确定"的提示,如图 6.8.1 所示。此时将纸杯放置 到天平上称重,并记录数值。

④ 再将纸杯放回至气压舱内,点击【确定】,此时注射器继续向下运动进行取样,当达到设定的取样量后,注射器开始向上运动,将废液排出。此时屏幕出现"请进行第二次称重,然后点击确定"的提示,如图 6.8.2 所示,此时将纸杯再次放置到天平上称重,并记录数值。两次的称重之差再除以被测液的密度即为实际取样体积。

图 6.8.2

七 测试方法

以检测油液为例说明仪器的操作步骤:

- 打开仪器电源开关,仪器自检正常后自动进入主菜单界面, 仪器开机后应预热 30 分钟。
- 2、将专用样品瓶清洗干净后,烘干,加入过滤过的石油醚溶液(等级在6级以下),并将其置于气压舱内,密闭气压舱。 点击【清洗操作】,再点击【开机清洗】,执行清洗操作3~
 5次,清洗完毕后点击【返回】,回到主菜单界面。
- 3、进行系统设置:系统设置是决定检测的重要环节,所以要 根据检测要求进行通道设置、检测设置、其它设置、搅拌 转子转速的调整(如果样品瓶中加入了搅拌转子,调整搅 拌器的转速以不搅起气泡旋涡为宜)等等。注意:系统设 置的各项内容是自动存储的,如果重复进行同类样品的检 测,可不必进行设置。
- 4、将待测样品进行处理:旋紧瓶盖,将待测样品放入超声波 清洗槽中(功率至少4000W/m²),超声波清洗槽中液体应 与待测样品瓶液位相一致,超声震荡至少1分钟。拿出后 将样品瓶擦干并使劲摇晃5分钟。再将样品瓶的瓶盖稍松 并放入超声波清洗槽中或采用抽真空的方法(真空度不低 于 53.5KPa),除去样品中的气泡,直至气泡上升至液面为

止,时间尽量短,然后静置 2~3 秒,以待余气上升至液面。 5、 根据样品的粘度情况选择常压检测或加压检测:参照 5.8 章节内容进行。

6、检测结束后可以进行数据查询,如设置的标准为NAS1638、 GJB420A-96、GJB420B-06、ISO4406-99、ISO4406-87或SAE749D 等油液分级标准,在数据查询界面点击【均值】,可查询到样品的等级。

7、 点击【打印全部页】,可将【打印设置】项设置的项目逐 一打印出来。

8、检测完毕后必须用过滤过的石油醚溶液(等级在6级以下)
 执行数次清洗操作。清洗完毕后方可进行下一个样品的检测或关机。
 ◆ 注意事项:

① 油样检测必须排除水的影响,哪怕油样中混入一滴水,都

会导致油样检测结果的混乱。

② 如果样品中含有铁磁性颗粒,铁磁性颗粒会在磁力搅拌器的磁场作用下快速沉降,从而影响检测结果。磁场隔离片是一个直径约 65mm 的圆钢片,使用时将其直接放置至检测台上即可。磁场隔离片可以起到屏蔽磁力搅拌器的磁场作用,防止样品中的铁磁性颗粒快速沉降。

③ 油样取样时必须采用处理干净的(清洗、烘干)专用样品

- 瓶,禁止采用纯净水或矿泉水瓶,以防混入水,影响检测 结果。
- ④ 如果检测不同基质的样品,应采用下述清洗方法进行置换: 先检测水基质样品,再检测油基质样品时,应采用:水→ 异丙醇→石油醚的清洗过程,再进行油基质样品的检测。
 如先检测油基质样品,再检测水基质样品时,应采用:石 油醚→异丙醇→水的清洗过程,再进行水基质样品的检测。

附录 I 传感器拆卸

- 1、 仪器开机,用过滤过的石油醚溶液(等级在6级以下)执行一次开机清洗操作,然后将石油醚从气压舱内取出,再执行一次开机清洗操作(气压舱内不放任何液体,目的是为了将仪器内的液路排空),清洗完毕后关机。
- 2、使用螺丝刀拧下左右两侧两个固定螺丝(如图1)然后去下上 盖,露出传感器。

图 1

 3、使用小号十字螺丝刀拆除(逆时针旋转)传感器接插件两侧的 固定螺钉(如图3),并将传感器接插件拆下。

图 2

取下传感器的上接口:一手扶住金属弯头,一手用扳手卡住上接口 锁母逆时针旋转将其取下(如图 4)。注意:上接口内有一个密封圈。

图 3

4、 拆掉气压舱靠前面的一颗固定螺钉(为下一步的操作做准备,

方便下扳手):用直径为 5mm 的内六角扳手逆时针旋转将其拆掉 (如图 5)。

图 4

5、松开传感器的下接口锁母:一手用开口为15mm的扳手卡住传 感器的下接口,一手用合适扳手卡住传感器下接口锁母逆时针旋 转将其松开(如图6)。松开后传感器就可以从仪器上拿下来了。 注意:下接口锁母内有一个密封圈。

图 5

6、 拆掉传感器的下接口:一手握住传感器,一手用扳手卡住传感

器下接口逆时针旋转(如图 7)将其取下,取下后如图 8 所示。 注意:下接口内有一个密封圈。

图 7

◇ 注意事项:

注意保管好拆下的接口及密封圈(共3个密封圈),如果有需要, 请更换新的密封圈。

附录Ⅱ 常用标准固体颗粒污染等级代号

污染度 颗粒尺寸范围(µm) 等级 25-50 50-100 5-15 15-25 >100

NAS1638(每100毫升的颗粒数)

污染度	颗粒尺寸范围(µm)										
等级	>2	>5	>15	>25	>50						
000	164	76	14	3	1						
00	328	152	27	5	1						
0	656	304	54	10	2						
1	1310	609	109	20	4						
2	2620	1220	217	39	7						
3	5250	2430	432	76	13						
4	10500	4860	864	152	26						
5	21000	9730	1730	306	53						
6 7 8	42000 83900 168000	19500 38900 77900	3460 6920 13900	612 1220 2450	106 212 424						
						9	336000	156000	27700	4900	848
						10	671000	311000	55400	9800	1700
11	1340000	623000	111000	19600	3390						
12	2690000	1250000	222000	39200	6780						

GJB 420A-96 (每 100 毫升的颗粒数)

尺寸	代码	A	В	C	D	E	F
尺	寸	>1µm	>5µm	>15µm	>25µm	>50µm	>100µn
		>4µm(c)	≥ <mark>6µm(c</mark>)	>14µm(c)	>21µm(c)	>38µm (c)	⇒70µm (c
8 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	000	195	76	14	3	1	0
	00	390	152	27	5	1	0
	0	780	304	54	10	2	0
	1	1560	609	109	20	4	1
	2	3120	1220	217	39	7	1
	3	6250	2430	432	76	13	2
	4	12500	4860	864	152	26	4
等级	5	25000	9730	1730	306	53	8
	6	50000	19500	3460	612	106	16
	7	100000	38900	6920	1220	212	32
	8	200000	77900	13900	2450	424	64
	9	400000	156000	27700	<mark>490</mark> 0	848	128
	10	800000	311000	55400	9800	1700	256
	11	1600000	623000	111000	19600	3390	512
	12	3200000	1250000	222000	39200	6780	1020

GJB 420B-2006 (每 100 毫升的颗粒数)

		代码	
大于	小于等于	11.525	
2,500,000		>28	
1,300,000	2,500,000	28	
640,000	1,300,000	27	
320,000	640,000	26	
160,000	320,000	25	
80,000	160,000	24	
40,000	80,000	23	
20,000	40,000	22	
10,000	20,000	21	
5,000	10,000	20	
2,500	5,000	19	
1,300	2,500	18	
640	1,300	17	
320	640	16	
160	320	15	
80	160	14	
40	80	13	
20	40	12	
10	20	11	
5	10	10	
2.5	5	9	
1.3	2.5	8	
0.64	1.3	7	
0.32	0.64	6	
0.16	0.32	5	
0.08	0.16	4	
0.04	0.08	3	
0.02	0.04	2	
0.01	0.02	1	
0.00	0.01	0	

ISO4406-1999(GB/T 14039-2002)(每毫升的颗粒数)

1ml中界	村田		
大 于	小于等于	标 亏	
80,000	160,000	24	
40,000	80,000	23	
20,000	40,000	22	
10,000	20,000	21	
5,000	10,000	20	
2,500	5,000	19	
1,300	2,500	18	
640	1,300	17	
320	640	16	
160	320	15	
80	160	14	
40	80	13	
20	40	12	
10	20	11	
5	10	10	
2.5	5	9	
1.3	2.5	8	
0.64	1.3	7	
0.32	0.64	6	
0.16	0.32	5	
0.08	0.16	4	
0.04	0.08	3	
0.02	0.04	2	
0.01	0.02	1	
0.005	0.01	0	
0.0025	0.005	0.9	

IS04406-1987 (JB/T 9737.1) (每毫升的颗粒数)

污染度	颗粒尺寸范围 (µm)						
等级	5-15	15-25	25-50	50-100	>100		
0	2700	670	93	16	1		
1	4600	1340	210	28	3		
2	9700	2080	380	56	5		
3	24000	5360	780	110	11		
4	32000	10700	1510	225	21		
5	87000	21400	3130	430	41		
6	128000	42000	6500	1000	92		

SAE749D (每100 毫升的颗粒数)

